Cantors proof

- A set is countable if you can count its elements. Of course if the set is finite, you can easily count its elements. If the set is infinite, being countable means that you are able to put the elements of the set in order just like natural numbers are in order. Yet in other words, it means you are able to put the elements of the set into a ...Contrary to popular belief, Cantor's original proof that the set of real numbers is uncountable was not the diag- onal argument. In this handout, we give (a modern interpretation o ) Cantor's ﬁrﬆ proof, then consider a way to generalise it to a wider class of objects, which we can use to prove another fact about R itself. Neﬆed ...The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous.It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes ...The idea behind the proof of this theorem, due to G. Cantor (1878), is called "Cantor's diagonal process" and plays a significant role in set theory (and elsewhere). Cantor's theorem implies that no two of the sets $$2^A,2^{2^A},2^{2^{2^A}},\dots,$$ are equipotent. lowe's home improvement san diego photoskansas state university wrestling Proof: Assume the contrary, and let C be the largest cardinal number. Then (in the von Neumann formulation of cardinality) C is a set and therefore has a power set 2 C which, by Cantor's theorem, has cardinality strictly larger than C.This proof implies that there exist numbers that cannot be expressed as a fraction of whole numbers. We call these numbers irrational numbers. The set of irrational numbers is a subset of the real numbers and amongst them are many of the stars of mathematics like square roots of natural numbers, π, ζ(3), and the golden ratio ϕ.In this article we are going to discuss cantor's intersection theorem, state and prove cantor's theorem, cantor's theorem proof. A bijection is a mapping that is injective …Euclid’s Proof of the Infinity of Primes [UPDATE: The original version of this article presented Euclid’s proof as a proof by contradiction. The proof was correct, but did have a slightly unnecessary step. However, more importantly, it was a variant and not the exact proof that Euclid gave.This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them.This is similar but not identical to Cantor's diagonal proof, because it still relies on the digital representation of the number: First note that N can be put into one to one correspondence with Q, the rationals. Consider the factoradic representations of all members of Q. Note that all of these must necessarily terminate*.Your method of proof will work. Taking your idea, I think we can streamline it, in the following way: Let $\epsilon>0$ be given and let $(\epsilon_k)$ be the binary sequence representing $\epsilon.$ Take the ternary sequence for the $\delta$ (that we will show to work) to be $\delta_k=2\epsilon_k$. pottery departmentmy rest net Cantor's 1879 proof. Cantor modified his 1874 proof with a new proof of its second theorem: Given any sequence P of real numbers x 1, x 2, x 3, ... and any interval [a, b], there is a number in [a, b] that is not contained in P. Cantor's new proof has only two cases. The way it is presented with 1 and 0 is related to the fact that Cantor's proof can be carried out using binary (base two) numbers instead of decimal. Say we have a square of four binary numbers, like say: 1001 1101 1011 1110 Now, how can we find a binary number which is different from these four? One algorithm is to look at the diagonal digits:Cantor's theorem implies that there are infinitely many infinite cardinal numbers, and that there is no largest cardinal number. It also has the following interesting consequence: … 20.00 an hour jobs Continuum hypothesis. In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that. there is no set whose cardinality is strictly between that of the integers and the real numbers, or equivalently, that. any subset of the real numbers is finite, is ...The negation of Bew(y) then formalizes the notion "y is not provable"; and that notion, Gödel realized, could be exploited by resort to a diagonal argument reminiscent of Cantor's." - Excerpt, Logical Dilemmas by John W. Dawson (2006) Complicated as Gödel’s proof by contradiction certainly is, it essentially consists of three parts. ben fitzpatricklogic model program evaluation Dedekind's proof of the Cantor–Bernstein theorem is based on his chain theory, not on Cantor's well-ordering principle. A careful analysis of the proof extracts an argument structure that can be seen in the many other proofs that have been given since. I ...Continuum hypothesis. In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that. there is no set whose cardinality is strictly between that of the integers and the real numbers, or equivalently, that. any subset of the real numbers is finite, is ...Cantor's proof. I'm definitely not an expert in this area so I'm open to any suggestions.In summary, Cantor "proved" that if there was a list that purported to include all irrational numbers, then he could find an irrational number that was not on the list. However, this "proof" results in a contradiction if the list is actually complete, as is ... acrisure glassdoor This characterization of the Cantor space as a product of compact spaces gives a second proof that Cantor space is compact, via Tychonoff's theorem. From the above characterization, the Cantor set is homeomorphic to the p-adic integers, and, if one point is removed from it, to the p-adic numbers. To take it a bit further, if we are looking to present Cantor's original proof in a way which is more obviously 'square', simply use columns of width 1/2 n and rows of height 1/10 n. The whole table will then exactly fill a unit square. Within it, the 'diagonal' will be composed of line segments with ever-decreasing (but non-zero) gradients ... kansaa basketball First, Cantor’s celebrated theorem (1891) demonstrates that there is no surjection from any set X onto the family of its subsets, the power set P(X). The proof is straight forward. Take I = X, and consider the two families {x x : x ∈ X} and {Y x …In today’s rapidly evolving job market, it is crucial to stay ahead of the curve and continuously upskill yourself. One way to achieve this is by taking advantage of the numerous free online courses available.Your method of proof will work. Taking your idea, I think we can streamline it, in the following way: Let ϵ > 0 ϵ > 0 be given and let (ϵk) ( ϵ k) be the binary sequence representing ϵ. ϵ. Take the ternary sequence for the δ δ (that we will show to work) to be δk = 2ϵk δ k = 2 ϵ k.3. Cantor’s Theorem For a set A, let 2A denote its power set. Cantor’s theorem can then be put as cardA<card2A.A modiﬁcation of Cantor’s original proof is found in almost all text books on Set Theory. It is as follows. Deﬁne a function f: A→ 2A by f(x) = {x}. Clearly, fis one-one. HenceI was reading Mathematical Analysis by Tom M. Apostol. There Cantor Intersection Theorem was proven using Bolzano-Weierstrass Theorem in this way Theorem : Let $\left\{Q_{1}, Q_{2}, \ldots\right\}... template for bills On Cantor's important proofs. W. Mueckenheim. It is shown that the pillars of transfinite set theory, namely the uncountability proofs, do not hold. (1) Cantor's first proof of the uncountability of the set of all real numbers does not apply to the set of irrational numbers alone, and, therefore, as it stands, supplies no distinction between ...First, the proof of the Cantor-Bendixson theorem motivated the introduction of transfinite numbers, and at the same time suggested the "principle of limitation," which is the key to the connection between transfinite numbers and infinite powers. Second, Dedekind's ideas, which Cantor discussed in September 1882, seem to have played an ...Cantor's theorem implies that there are infinitely many infinite cardinal numbers, and that there is no largest cardinal number. It also has the following interesting consequence: There is no such thing as the "set of all sets''. Suppose A A were the set of all sets. Since every element of P(A) P ( A) is a set, we would have P(A) ⊆ A P ( A ... This comes from the textbook: Edward A. Scheinerman - Mathematics: A Discrete Introduction-Cengage Learning (2012) I understand everything in the proof except for why Dr. Scheinerman defined the ...An Attempted Proof of Cantor's Theorem. Ask Question Asked 10 years, 3 months ago. Modified 10 years, 3 months ago. Viewed 443 times 1 $\begingroup$ OK, I have read two different proofs of the following theorem both of which I can't quite wrap my mind around. So, I tried to write a proof that makes sense to me, and hopefully to others with the ...Your method of proof will work. Taking your idea, I think we can streamline it, in the following way: Let ϵ > 0 ϵ > 0 be given and let (ϵk) ( ϵ k) be the binary sequence representing ϵ. ϵ. Take the ternary sequence for the δ δ (that we will show to work) to be δk = 2ϵk δ k = 2 ϵ k.First-time passport applicants, as well as minor children, must apply for passports in person. Therefore, you’ll need to find a passport office, provide proof of identity and citizenship and fill out an application. These guidelines are for... joe naismithwind known for its warmth nyt crossword clue Cantor's diagonal argument: As a starter I got 2 problems with it (which hopefully can be solved "for dummies") First: I don't get this: Why doesn't Cantor's diagonal argument also apply to natural ... Your proof is actually correct that the cardinality of reals is equal to the cardinality of the set of all sequences with infinite digits. Share ...Here’s Cantor’s proof. Suppose that f : N ! [0;1] is any function. Make a table of values of f, where the 1st row contains the ... Using a version of Cantor’s argument, it is possible to prove the following theorem: Theorem 1. For every set S, jSj <jP(S)j. Proof. Let f: S!There is an alternate characterization that will be useful to prove some properties of the Cantor set: \(\mathcal{C}\) consists precisely of the real numbers in \([0,1]\) whose base-3 expansions only contain the digits 0 and 2.. Base-3 expansions, also called ternary expansions, represent decimal numbers on using the digits \(0,1,2\).3. Cantor's second diagonalization method The first uncountability proof was later on [3] replaced by a proof which has become famous as Cantor's second diagonalization method (SDM). Try to set up a bijection between all natural numbers n œ Ù and all real numbers r œ (0,1]. For instance, put all these real numbers in a random sequence in a ...Cantor's set theory was controversial at the start, but later became largely accepted. Most modern mathematics textbooks implicitly use Cantor's views on mathematical infinity . For example, a line is generally presented as the infinite set of its points, and it is commonly taught that there are more real numbers than rational numbers (see ...An elegant proof using Coulomb's Law, infinite series, and…. Read more…. Read all stories published by Cantor's Paradise on October 06, 2023. Medium's #1 Math Publication.Cantor's theorem implies that there are infinitely many infinite cardinal numbers, and that there is no largest cardinal number. It also has the following interesting consequence: There is no such thing as the "set of all sets''. Suppose A A were the set of all sets. Since every element of P(A) P ( A) is a set, we would have P(A) ⊆ A P ( A ... Cantor's argument of course relies on a rigorous definition of "real number," and indeed a choice of ambient system of axioms. But this is true for every theorem - do you extend the same kind of skepticism to, say, the extreme value theorem? Note that the proof of the EVT is much, much harder than Cantor's arguments, and in fact isn't ... resolution conflict 10 thg 4, 2023 ... We don't have to proof it over here rather we have to determine the Nth term in the set of rational numbers. Examples : Input : N = 8 Output : 2 ...First, the proof of the Cantor-Bendixson theorem motivated the introduction of transfinite numbers, and at the same time suggested the "principle of limitation," which is the key to the connection between transfinite numbers and infinite powers. Second, Dedekind's ideas, which Cantor discussed in September 1882, seem to have played an ...The set of rational numbers is countable. The most common proof is based on Cantor's enumeration of a countable collection of countable sets. I found an illuminating proof in [ Schroeder, p. 164] with a reference to [ Sagher ]. Every positive rational number has a unique representation as a fraction m/n with mutually prime integers m and n.3. C C is the intersection of the sets you are left with, not their union. Though each of those is indeed uncountable, the infinite intersection of uncountable sets can be empty, finite, countable, or uncountable. – Arturo Magidin. Mar 3 at 3:04. 1. Cantor set is the intersection of all those sets, not union. christian braun finals stats The difference is it makes the argument needlessly complicated. And when the person you are talking to is already confused about what the proof does or does not do,, adding unnecessary complications is precisely what you want to avoid. This is a direct proof, with a hat and mustache to pretend it is a proof by contradiction. $\endgroup$Most countries have now lifted or eased entry restrictions for international travelers, but some require proof of COVID vaccination to allow entry. Depending on the requirements of your destination, a vaccination card might not be enough.In the proof of Cantor’s theorem we construct a set \(S\) that cannot be in the image of a presumed bijection from \(A\) to \(\mathcal{P}(A)\). Suppose \(A = \{1, 2, 3\}\) and \(f\) determines the following correspondences: \(1 \iff ∅\), \(2 \iff \{1, 3\}\) and \(3 \iff \{1, 2, 3\}\). What is \(S\)? perry.ellis Cantor's diagonalization method: Proof of Shorack's Theorem 12.8.1 JonA.Wellner LetI n(t) ˝ n;bntc=n.Foreachﬁxedtwehave I n(t) ! p t bytheweaklawoflargenumbers.(1) Wewanttoshowthat kI n Ik sup 0 t 1 jI1 Cantor’s Pre-Grundlagen Achievements in Set Theory Cantor’s earlier work in set theory contained 1. A proof that the set of real numbers is not denumerable, i.e. is not in one-to-one correspondance with or, as we shall say, is not equipollent to the set of natural numbers. [1874] 2. A deﬁnition of what it means for two sets M and N to ...With these definitions in hand, Cantor's isomorphism theorem states that every two unbounded countable dense linear orders are order-isomorphic. [1] Within the rational numbers, certain subsets are also countable, unbounded, and dense. The rational numbers in the open unit interval are an example. Another example is the set of dyadic rational ...Cantor's Mathematics of the Infinite • Cantor answered this question in 1873. He did this by showing a one‐to‐one correspondence between the rational numbers and the integers. • Rational numbers are essentially pairs of integers -a numerator and a denominator. So he showedIn mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from ...Aug 6, 2020 · 126. 13. PeterDonis said: Cantor's diagonal argument is a mathematically rigorous proof, but not of quite the proposition you state. It is a mathematically rigorous proof that the set of all infinite sequences of binary digits is uncountable. That set is not the same as the set of all real numbers. publicly fundedkansas men's football Set theory, Cantor's theorems. Arindama Singh This article discusses two theorems of Georg Can tor: Cantor's Little Theorem and Cantor's Diag onal Theorem. The results are obtained by gen eralizing the method of proof of the well known Cantor's theorem about the cardinalities of a set and its power set. As an application of these,That is Cantor's proof of why all elements of a countable set can't be 1-to-1 matched with all elements of an uncountable set. 4. The problem with definition of real numbers. So as we have recalled in chapter 2, real numbers from half-open range [0,1) form an uncountable infinity (i.e. such an infinite set which can not be counted as 1, 2 ... us house of representatives kansas Set Theory. First published Wed Oct 8, 2014; substantive revision Tue Jan 31, 2023. Set theory is the mathematical theory of well-determined collections, called sets, of objects that are called members, or elements, of the set. Pure set theory deals exclusively with sets, so the only sets under consideration are those whose members are also sets.Cantor's diagonalization method: Proof of Shorack's Theorem 12.8.1 JonA.Wellner LetI n(t) ˝ n;bntc=n.Foreachﬁxedtwehave I n(t) ! p t bytheweaklawoflargenumbers.(1) Wewanttoshowthat kI n Ik sup 0 t 1 jIDisproving Cantor's diagonal argument. I am familiar with Cantor's diagonal argument and how it can be used to prove the uncountability of the set of real numbers. However I have an extremely simple objection to make. Given the following: Theorem: Every number with a finite number of digits has two representations in the set of rational numbers.It would invalidate Cantor's proof - or rather, Cantor's proof doesn't say that the set of computable numbers is larger than the set of natural numbers; Cantor's proof about the real numbers applies to the real numbers - not to a subset of the reals like the computables. A variant of Cantor's proof *can* still be used to show that ... who is kansas state playing today Cantor's argument of course relies on a rigorous definition of "real number," and indeed a choice of ambient system of axioms. But this is true for every theorem - do you extend the same kind of skepticism to, say, the extreme value theorem? Note that the proof of the EVT is much, much harder than Cantor's arguments, and in fact isn't ...In today’s digital age, businesses are constantly looking for ways to streamline their operations and stay ahead of the competition. One technology that has revolutionized the way businesses communicate is internet calling services.Cantor's diagonal proof basically says that if Player 2 wants to always win, they can easily do it by writing the opposite of what Player 1 wrote in the same position: Player 1: XOOXOX. OXOXXX. OOOXXX. OOXOXO. OOXXOO. OOXXXX. Player 2: OOXXXO. You can scale this 'game' as large as you want, but using Cantor's diagonal proof Player 2 will still ... who won big 12 tournamentapa firmat Cantor's work between 1874 and 1884 is the origin of set theory. ... This paper was the first to provide a rigorous proof that there was more than one kind of infinity. A first step towards Cantor's set theory already was his 1873 proof that the rational numbers are countable, i.e. they may be placed in one-one correspondence with the ...The second proof of Theorem 11 will then follow from our next result. Theorem 12. All Liouville numbers are transcendental. Lemma 1. Let α be an irrational number which is a root of f(x) = P n j=0 a jx j ∈ Z[x] with f(x) 6≡0. Then there is a constant A = A(α) > 0 such that if a and b are integers with b > 0, then α− a b .> A bn (6) Proof.In the proof of Cantor’s theorem we construct a set \(S\) that cannot be in the image of a presumed bijection from \(A\) to \(\mathcal{P}(A)\). Suppose \(A = \{1, 2, 3\}\) and \(f\) … joel embiid kansas Proof: Assume the contrary, and let C be the largest cardinal number. Then (in the von Neumann formulation of cardinality) C is a set and therefore has a power set 2 C which, by Cantor's theorem, has cardinality strictly larger than C.Demonstrating a cardinality (namely that of 2 C) larger than C, which was assumed to be the greatest cardinal number, …In this article we are going to discuss cantor's intersection theorem, state and prove cantor's theorem, cantor's theorem proof. A bijection is a mapping that is injective as well as surjective. Injective (one-to-one): A function is injective if it takes each element of the domain and applies it to no more than one element of the codomain. It ...Cantor’s diagonal argument was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets that cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are known as uncountable sets and the size of infinite sets is now treated by the theory of cardinal …Remember that Turing knew Cantor's diagonalisation proof of the uncountability of the reals. Moreover his work is part of a history of mathematics which includes Russell's paradox (which uses a diagonalisation argument) and Gödel's first incompleteness theorem (which uses a diagonalisation argument).4 Another Proof of Cantor’s Theorem Theorem 4.1 (Cantor’s Theorem) The cardinality of the power set of a set X exceeds the cardinality of X, and in particular the continuum is uncountable. Proof [9]: Let X be any set, and P(X) denote the power set of X. Assume that it is possible to deﬁne a one-to-one mapping M : X ↔ P(X) Deﬁne s 0,s 1,s jeff withey ku My friend and I were discussing infinity and stuff about it and ran into some disagreements regarding countable and uncountable infinity. As far as I understand, the list of all natural numbers is countably infinite and the list of reals between 0 and 1 is uncountably infinite. Cantor's diagonal proof shows how even a theoretically complete ...To prove the Cantor Normal Form Theorem you unsurprisingly use (transfinite) induction. Suppose that $\alpha > 0$ is an ordinal ($0$ clearly has a Cantor Normal Form), and a Cantor Normal Form exists for all ordinals $\gamma < \alpha$. what is 6pm kst in california The Cantor function Gwas deﬁned in Cantor's paper [10] dated November 1883, the ﬁrst known appearance of this function. In [10], Georg Cantor was working on extensions of ... Proof. It follows directly from (1.2) that G is an increasing function, and moreover (1.2)Most countries have now lifted or eased entry restrictions for international travelers, but some require proof of COVID vaccination to allow entry. Depending on the requirements of your destination, a vaccination card might not be enough.The Riemann functional equation. let's call the left-hand side Λ (s). It doesn't matter what it means yet but one thing is clear, the equation then says that Λ (s) = Λ (1-s). That is, by replacing s with 1-s, we "get back to where we started". This is a reflectional symmetry. 1917 s wheat penny value In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from ...Continuum hypothesis. In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that. there is no set whose cardinality is strictly between that of the integers and the real numbers, or equivalently, that. any subset of the real numbers is finite, is ...Continuum hypothesis. In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that. there is no set whose cardinality is strictly between that of the integers and the real numbers, or equivalently, that. any subset of the real numbers is finite, is ...Transcendental Numbers. A transcendental number is a number that is not a root of any polynomial with integer coefficients. They are the opposite of algebraic numbers, which are numbers that are roots of some integer polynomial. e e and \pi π are the most well-known transcendental numbers. That is, numbers like 0, 1, \sqrt 2, 0,1, 2, and \sqrt ...I am working on my own proof for cantors theorem that given any set A, there does not exist a function f: A -> P(A) that is onto. I was wondering if it would be possible to prove this by showing that the cardinality of A is less than P(A) using the proof that the elements of set A is n and P(A) is 2^n so n < 2^n for all natural numbers (by …In my understanding of Cantor's diagonal argument, we start by representing each of a set of real numbers as an infinite bit string. ... That's the basics for why the proof doesn't work. $\endgroup$ – Michael Chen. Apr 26, 2011 at 0:36. 2 $\begingroup$ I don't think these arguments are sufficient though.About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features NFL Sunday Ticket Press Copyright ... interventions designed to prevent problem behaviorsridenow powersports concord reviews 3. Cantor's second diagonalization method The first uncountability proof was later on [3] replaced by a proof which has become famous as Cantor's second diagonalization method (SDM). Try to set up a bijection between all natural numbers n œ Ù and all real numbers r œ (0,1]. For instance, put all these real numbers in a random sequence in a ... ou kansas game score At this point we have two issues: 1) Cantor's proof. Wrong in my opinion, see...If you havn't seen this proof, it fairly simple. See Cantor's Diagonal Argument for instance. I don't know if it is possible to prove that the trancedental numbers are uncountable without first knowing that R is uncountable. $\endgroup$ – user3180. May 5, 2011 at 6:52. 4In this article we are going to discuss cantor's intersection theorem, state and prove cantor's theorem, cantor's theorem proof. A bijection is a mapping that is injective … publix naples towne center Gauss, in a celebrated letter to Heinrich Schumacher, expressed in most authoritative terms his opposition to use of such infinities: But concerning your proof, ...But Cantor’s paper, in which he first put forward these results, was refused for publication in Crelle’s Journal by one of its referees, Kronecker, who henceforth vehemently opposed his work. On Dedekind’s intervention, however, it was published in 1874 as “Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen” (“On …The 1981 Proof Set of Malaysian coins is a highly sought-after set for coin collectors. This set includes coins from the 1 sen to the 50 sen denominations, all of which are in pristine condition. It is a great addition to any coin collectio...3. C C is the intersection of the sets you are left with, not their union. Though each of those is indeed uncountable, the infinite intersection of uncountable sets can be empty, finite, countable, or uncountable. - Arturo Magidin. Mar 3 at 3:04. 1. Cantor set is the intersection of all those sets, not union.Cantor’s diagonal argument was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets that cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are known as uncountable sets and the size of infinite sets is now treated by the theory of cardinal …In theory, alcohol burns sufficiently at a 50 percent content or 100 proof, though it can produce a weak flame with a lower proof. This number is derived from an early method used to proof alcohol. native american southwest food Cantor's diagonal proof basically says that if Player 2 wants to always win, they can easily do it by writing the opposite of what Player 1 wrote in the same position: Player 1: XOOXOX. OXOXXX. OOOXXX. OOXOXO. OOXXOO. OOXXXX. Player 2: OOXXXO. You can scale this 'game' as large as you want, but using Cantor's diagonal proof Player 2 will still ...To kick off the proof we'll fix a positive integer n ≥ 1 and define the function f by the following: where a and b are the numbers from above - that is π = a/b. This function has some interesting properties that we will now explore. The first observation is that f (x) = f (π - x).Georg Cantor's first uncountability proof demonstrates that the set of all real numbers is uncountable. This proof differs from the more familiar proof that uses his diagonal argument. Cantor's first uncountability proof was published in 1874, in an article that also contains a proof that the set of real algebraic numbers is countable, and a ...